

AD 404 495

Reproduced by the DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

•••

1

64 - 3 - 4

NRL Report 5916

TENSILE AND IMPACT PROPERTIES OF SOME MARAGING STEEL COMPOSITIONS

J. E. Srawley and T. C. Lupton

Strength of Metals Branch Metallurgy Division

April 23, 1963

MAY 23 1963

U. S. NAVAL RESEARCH LABORATORY Washington, D.C.

-

ABSTRACT

Laboratory vacuum induction heats of 18%-Ni maraging steels were cast into 25-pound ingots and forged into flat bar stock. Transverse tensile and Charpy V specimens were obtained from the forged material. One composition contained 8.4% Co, 3.2% Mo, and 0.2% Ti; five others contained 7% or 9% Co and 3.2%, 3.8%, or 5% Mo, but no titanium. Specimens were aged at various tem-peratures up to 1000°F, and Charpy V and tensile properties were determined at room temperature. Charpy V tests were also conducted at 30° and -20°F. The titanium-containing composition consistently developed considerably better combinations of Charpy V toughness and yield strength than did the others. When aged at 900°F the yield strength was 190,500 psi, and the Charpy V impact energy level in the temperature range -20° to 80° F exceeded 50 foot-pounds. Aging at lower temperatures resulted in greater toughness and lower yield strengths.

PROBLEM STATUS

This is an interim report; work on the problem is continuing.

AUTHORIZATION

NRL Problem M01-05 Projects RR-007-01-46-5405 and WW041

Manuscript submitted January 14, 1963.

Copies available from Office of Technical Services Department of Commerce - \$.50

TENSILE AND IMPACT PROPERTIES OF SOME MARAGING STEEL COMPOSITIONS

INTRODUCTION

The maraging steels are a recently developed class of virtually carbon-free steels which may be heat treated to high strength levels by aging at moderate temperatures (1,2). When air-cooled from temperatures of the order of 1500°F after hot working or annealing, for instance, the steels have a structure of comparatively soft, cubic martensite and can be readily cold worked or machined. On subsequent aging at temperatures up to 1000°F, precipitation and ordering processes occur which result in the hardening of the metal to strength levels which depend upon composition and aging time and temperature.

The class of maraging steels comprises a considerable variety of compositions, but, so far, most attention has been paid to the subclass containing about 18% nickel together with cobalt, molybdenum, and titanium, and particularly to those compositions capable of developing yield strengths in the range 250,000 to 300,000 psi when aged at 900°F (3). While these compositions have good toughness by comparison with that of other materials at comparable strength levels, this degree of toughness is inadequate for certain rigorous applications, such as submarine hulls. For such applications it is necessary to seek other compositions of this class of steels which would have greater toughness combined with yield strengths in the range 150,000 to 200,000 psi. The question of what constitutes adequate toughness for submarine hull applications is one which is currently under intensive investigation; however, there are strong indications that a Charpy V shelf-energy level of 50 foot-pounds is a conservative criterion for preliminary screening purposes (4). Since very little information is available on the properties of maraging steels at these relatively low strength levels, it was considered desirable to produce and test a series of appropriate compositions.

The first group of these compositions, with which this report is solely concerned, are simplified variants of a composition which is recommended for use at the 200,000-psi yield strength level (5). The nominal composition of the 200,000-psi-recommended material is: 18% Ni, 8.5% Co, 3.2% Mo, and 0.2% Ti. All other elements, particularly C, Si, Mn, S, and P, are kept to very low levels. Also, small amounts of Al, B, and Zr are deliberately added as being beneficial in the quantities used (1).

Of the seven heats discussed in this report, one had essentially the given nominal composition, but no additions of Al, B, or Zr were made. The other six heats differed from the nominal composition in that they contained no titanium. Although titanium is a secondary strengthening agent in the maraging steels, it is not essential for the development of high strength levels. In certain kinds of welding, accurate control of the titanium content of the deposit could constitute a problem. For this reason, it is of interest to know whether titanium-free maraging steels might be suitable for applications in the 150,000 to 200,000psi yield strength range. The variable factors in these six titanium-free compositions are the cobalt and molybdenum contents.

The effect of aging temperature on the tensile properties and Charpy V impact energy was investigated for each composition. Although it is usually recommended that maraging steels should be aged at 900°F to develop the maximum yield strengths of which they are capable, there is no obvious reason why a different aging temperature might not result in a more appropriate balance of strength and toughness for a given application. For applications such as submarine hulls there are obvious practical reasons for preferring a lower aging temperature, if feasible.

MATERIALS AND PROCEDURE

Ingots of the required compositions were produced by vacuum induction melting of charges made up of high-purity, vacuum-melted iron and high-purity nickel, cobalt, molybdenum, and titanium. Each 25-pound heat was poured into an ingot of approximately 3-in.square cross section. The analyzed compositions of the steels are given in Table 1. The major part of each ingot was hammer-forged in the temperature range 1500° to 2200°F into 0.5 by 2.5-in.-section bar stock. This was subsequently cut up into transverse Charpy specimen blanks. The remaining portion of each ingot was forged into 0.6 by 3.0-in.section bar stock to be cut up into transverse tensile specimen blanks. All specimen blanks were solution annealed at $1500 \cdot 10°F$ for one hour and air-cooled before machining. The orientation of the Charpy specimens with respect to the bar stock was such that the notched faces were perpendicular to the 2.5-in.-wide surfaces of the bar. This orientation would be expected to provide the most severe test of the toughness since the fracture in the Charpy specimen would propagate in the comparatively weak direction of major forging flow.

Table 1Analyses of the Steels

Heat	Composition (wt-%)									
Number	С	Mn	S	Р	Si	Ni	Co	Mo	Ti	Al
276	0.02	0.00	0.003	0.002	0.00	18.5	7.0	3.8	0.00	0.01
277	0.03	0.00	0.005	0.003	0.00	18.5	9.0	3.8	0.00	0.01
278	0.02	0.00	0.004	0.003	0.00	18.5	7.0	5.0	0.00	0.01
279	0.02	0.00	0.004	0.004	0.00	18.5	9.0	5.0	0.00	0.01
283	0.02	0.00	0.006	0.002	0.00	18.3	0.01	3.4	0.00	0.01
284	0.02	0.00	0.004	0.002	0.00	18.5	8.8	3.2	0.00	0.01
285	0.02	0.00	0.005	0.002	0.00	18.5	8.4	3.2	0.20	0.01

After machining to size, sets of three Charpy and one tensile specimens of each composition were aged for 3 hours at each of the following temperatures: 400° , 500° , 600° , 700° , 800° , 900° , and 1000° F. The tensile specimen (0.252-in. diam) and one of the Charpy specimens from each set were tested at room temperature. The other Charpy specimens were tested at 20° or -30° F. An additional set of each composition was tested in the unaged condition.

DISCUSSION OF RESULTS

The results of the tensile tests at 80°F are given in Table 2, and those of the Charpy tests are given in Table 3. The yield strengths are plotted versus aging temperature in Figs. 1 and 2, the curves being separated into two figures to avoid confusion. Yield strengths in the unaged condition are not shown since they differed little from those for the 400°F aged condition.

Table 2Tensile Properties at 80°F

Table 3 Charpy V Impact Energies

Charpy V Energy (ft-lb)

At 80°F At 30°F At -20°F

Heat	Aging Temp.*	Tensile Strength	Yield Strength	Reduction of Area	Elongation on 1 in.	Heat Number	Aging Temp.*	F
Number	(°F)	(ksi)	(ksi)	(%)	(%)	Number	(°F)	ŀ
276	Not Aged	134.5	104.5	70.0	18.0	276	Not Aged	
	400	130.0	104.0	72.0	18.0	Ì	400 500	L
	500	131.0	111.5	66.5	17.0		600	
	600	139.0	117.5	65.0	18.0		700	I
	700	147.2	127.0	66.5	17.0		800	
	800	155.0	140.0	52.0	17.0		900	1
	900	182.5	172.0	53.6	15.0		1000	l
	1000	184.0	162.5	54.6	19.0	277	Not Aged	
277	Not Aged	135.0	106.0	62.8	17.0		400	
	400	136.0	103.0	64.5	17.0		500	
	500	138.5	114.5	61.3	15.0		600	
	600	146.0	124.0	61.5	18.0		700	
	700	165.5	149.0	56.8	17.0		800	1
	800	175.5	162.0	57.3	15.0 13.0		900	
	900	202.0	190.0	51.4	19.0		1000	1
	1000	195.0	174.0	53.0		278		
278	Not Aged	132.0	101.0	72.2	18.0	210	Not Aged	1
	400	136.5	108.5	71.8	17.0		500	
	500	140.0	116.0	70.1	17.0		600	
	600	147.5	127.5	66.0	18.0	i l	700	
	700	166.0	147.0	63.5	18.0		800	
	800	172.0	158.0	56.6	17.0		900	
	900 1000	212.0 203.5	194.0	48.0 54.8	12.0 18.0		1000	
			_	1		279	Not Ageo	1
279	Not Aged	134.0	97.5	70.0	18.0 17.0		400	
	400	137.5	109.5	67.0	17.0		500	
	500	140.0	116.5	68.0 62.8	17.0		600	
	600	151.0	128.0	59.5	19.0		700	
	700	182.5	163.5 203.0	59.5	15.0		800	
	800 900	218.0 217.0	203.0	55.0	14.0		900	
	1000	217.0	187.0	53.5	18.0		1000	
283	Not Aged	125.2	108.0	68.7	16.0	283	Not Ageo	1
205	400	125.5	105.5	68.0	16.0		400	
	500	125.2	109.4	68.8	18.0		500	
	600	128.0	110.2	69.5	20.0		600	
	700	129.0	114.5	68.0	20.0	1 1	700	
	800	126.2	116.1	68.6	22.0		800	
	900	130.0	124.0	68.5	21.0		900	
	1000	133.0	118.5	65.5	23.0		1000	
284	Not Aged	131.0	111.0	68.0	16.0	284	Not Age	1
1	400	132.5	108.0	71.0	17.0		400	
	500	133.5	113.0	70.1	18.0		600	
	600	141.0	123.0	66.5	20.0		700	
	700	154.5	138.0	68.2	23.0		800	
	800	161.0	150.0	67.0	19.0		900	
	900	183.0	164.5	64.8	16.0		1000	
1	1000	179.5	171.0	65.2	22.0	285	Not Age	
285	Not Aged		113.8	77.5	19.0	265	400	ul.
	400	135.0	114.0	73.0	18.0		500	
	500	137.8	120.5	75.6	20.0		600	
	600	144.5	126.5	72.5	20.0		700	
	700	162.5	143.5	66.5	21.0		800	
	800	174.5	163.0	68.6	21.0 16.0		900	
	900	199.0	190.5	68.1 65.2	19.0		1000	
1	1000	195.0	185.0	00.4	10.0]		-

*Aging Time: 3 hours.

*Aging Time: 3 hours.

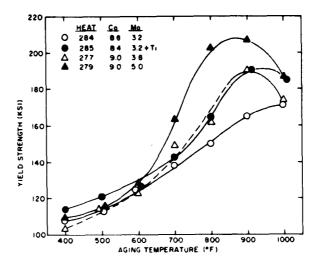


Fig. 1 - Yield strengths vs aging temperature for the four compositions containing more than 8% Co. The specimens were aged for 3 hours at the indicated temperatures.

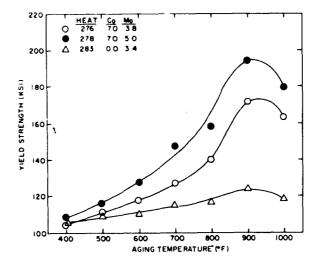
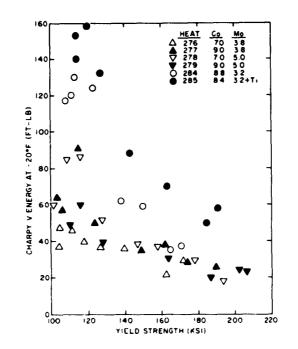
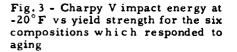


Fig. 2 - Yield strength vs aging temperatures for the three compositions containing less than 8% Co. The specimens were aged for 3 hours at indicated temperatures.

NAVAL RESEARCH LABORATORY

The four steels represented in Fig. 1 are the three which had 9% Co with different levels of Mo, and the recommended composition containing 0.2% Ti. Aging at temperatures below 700°F had only a moderate effect, and the different compositions do not differ much in yield strength when aged at these temperatures. The effect of composition becomes evident at higher aging temperatures. The maximum yield strength is greater and occurs at a lower aging temperature as the molybdenum content in the titanium-free alloys becomes greater. The aging curve of the titanium-containing composition, heat 285, follows fairly closely that of the titanium-free composition, heat 277, which contained 3.8% Mo. Presumably the 0.2% Ti of heat 227 just about compensated for the lower Co and Mo contents of heat 285. However, heat 285 had a substantially higher yield strength when aged at 1000°F than did heat 277, indicating the tendency of titanium to inhibit overaging.


The remaining three steels, represented in Fig. 2, are the two which had 7% Co with 3.8% or 5.0% Mo, and the one which contained 3.4% Mo and no cobalt. The latter responded only slightly to aging and need not be considered further. The aging curve of the higher molybdenum alloy, heat 278, is very similar to that of the titanium-containing alloy, heat 285, shown in Fig. 1. Comparison of the curves for heats 276 and 278 shows that the effect of molybdenum in the 7%-Co compositions is quite similar to the effect in the 9%-Co compositions.


As indicated in the Introduction, Charpy V impact energy values provide preliminary guidance as to the suitability, with respect to toughness, of materials for such applications as submarine hulls. Study of the values given in Table 3 will show that in no case is there a clear indication of a transition temperature occurring within the test temperature range 80° to -20° F. In many cases the three values at three different testing temperatures are in quite close agreement. Thus, the temperature range of service interest appears to be a range of substantially constant toughness for all compositions and aging temperatures considered here. This range could be either above or below a transition temperature, but where the impact energy level exceeds 50 foot-pounds the temperature range is unlikely to be below a transition temperature.

The various compositions are most conveniently compared by means of the plot shown in Fig. 3 where the Charpy V impact energies at -20° F are plotted versus yield strength. It is clear from this plot that the Charpy V energy in each case decreases continually as the yield strength increases, the greatest rate of decrease occurring at the lower levels of yield strength. However, at any given yield strength level the impact energy depends upon the composition and is always greater for heat 285, the recommended titaniumbearing composition, than for any of the others. Furthermore, even at its maximum yield strength of 190,500 psi, the impact energy level for this steel exceeded 50 foot-pounds, suggesting good promise of adequate toughness for submarine hull applications. The impact energy level for the best of the titanium-free compositions, heat 284, dropped below 50 footpounds at a yield strength somewhere between 150,000 and 165,000 psi.

CONCLUSIONS

The results show clearly that the titanium-containing composition (heat 285) developed considerably better combinations of yield strength and Charpy V toughness than did the titanium-free compositions (Fig. 3). This composition is essentially that recommended by the original developers of maraging steels for applications at a yield strength level of 200,000 psi. When specimens of this composition were aged for 3 hours at 900°F, the yield strength was 190,500 psi and the Charpy V impact energy level in the temperature range -20° to $80^{\circ}F$ somewhat exceeded 50 foot-pounds. This is considered to indicate good promise of adequate toughness for submarine hull applications and would justify extensive further testing by drop-weight-tear and explosion-tear methods (4).

Aging at lower temperatures than 900° F resulted in greater toughness and lower yield strengths. For some applications the combination resulting from a lower temperature aging treatment might be preferred.

REFERENCES

- 1. Decker, R.F., Bath, J.T., and Goldman, A.J., "18% Nickel Maraging Steel," ASM Trans. Quart., 55:58-76 (Mar. 1962)
- 2. Floreen, S., and Decker, R.F., "Heat Treatment of 18% Nickel Maraging Steel," ASM Trans. Quart., 55:518-530 (Sept. 1962)
- 3. Drennan, D.C., and Roach, D.B., "Properties of Mar-aging Steels," DMIC Memorandum 156, July 1962
- 4. Pellini, W.S., and Puzak, P.P., "Factors that Determine the Applicability of High Strength Quenched and Tempered Steels to Submarine Hull Construction," NRL Report 5892, Dec. 1962 (Paper presented at Navy Workshop on Deep Submergence Hulls at David Taylor Model Basin 3-5 December 1962)
- 5. Decker, R.F., "Nickel-Cobalt-Molybdenum Steels," Research Seminar on Improved Materials for Critical Applications, International Nickel Company, Inc., April 1961

* * *

I. Steel – Mech.	1. Steel – Mech.
prop.	prop.
2. Steel – Test	2. Steel – Test
results	results
I. Srawley, J. E.	1. Srawley, J. E.
Mo,	Mo,
II. Lupton, T. C.	II. Lupton, T. C.
UNCLASSIFIED Naval Research Laboratory. Report 5916. TENSILE AND IMPACT PROPERTIES OF SOME MARAGING STEEL COMPOSITIONS, by J. E. Srawley and T. C. Lupton. 6 pp. 4 figs., April 23, 1963. Laboratory vacuum induction heats of 18%-Ni maraging steels were cast into 25-pound ingots and forged into flat bar stock. Transverse tensile and Charpy V specimens were obtained 8.4% Co, 3.2% Mo, and 0.2% Ti; five others contained 7% or 9% Co and 3.2%, 3.8%, or 5% Mo, but no titanium. Specimens were aged at various temperatures up to 1000°F, and Charpy V and tensile properties were also conducted room temperature. Charpy V tests were also conducted to the other stock of the state were also conducted to the stature. Charpy V tests were also conducted to the stature of the stature also conducted to the stature of the stature and the stature of the	UNCLASSIFIED UNCLASSIFIED Naval Research Laboratory. Report 5916. TENSILE AND IMPACT PROPERTIES OF SOME MARAGING STEEL COMPOSITIONS, by J. E. Srawley and T. C. Lupton. 6 pp. & figs., April 23, 1963. Laboratory vacuum induction heats of 18%-Ni maraging steels were cast into 25-pound ingots and forged into flat har stock. Transverse tensile and Charpy V Specimens were obtained from the forged material. One composition contained 8.4% Co, 3.2% Mo, and 0.2% Ti, five others contained 7% or 9% Co and 3.2%, 3.8%, or 5% Mo, but no titanium. Specimens were aged at various temperatures up to 1000°F, and Charpy V and tensile properties were determined at room temperature. Charpy V tests were also conducted
1. Steel - Mech.	1. Steel - Mech.
prop.	prop.
2. Steel - Test	2. Steel - Test
results	results
1. Srawley, J. E.	1. Srawley, J. E.
11. Lupton, T. C.	11. Lupton, T. C.
UNCLASSIFIED Naval Research Laboratory. Report 5916. TENSILE AND IMPACT PROPERTIES OF SOME MARAGING STEEL COMPOSITIONS, by J. E. Srawley and T. C. Lupton. 6 pp. & figs., April 23, 1463. Laboratory vacuum induction heats of 18 ~Ni maraging steels were cast into 25-pound inquts and Charpy V spectmens were obtained from the forged indicateral. One composition contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 7 % or 9 % Co and and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 8.4 % Co, 3.2 % Mo, and 0.2 % Tr, five others contained 7 % Mo, and 0.2 % Tr, five others contained 7 % Mo, and 0.2 % Tr, five others contained 7 % MO, and 0.2 % Tr, five others contained 7 % MO, and 0.2 % Tr, five others contained 7 % MO, and 0.2 % Tr, five others contained 7 % MO, and 0.2 % Tr, five others five the five	UNCLASSIFIED UNCLASSIFIED Naval Research Laboratory. Report 5916. TENSILE AND IMPACT PROPERTIES OF SOME MARAGING STEEL COMPOSITIONS, by J. E. Srawley and T. C. Lupton. 6 pp. & figs., April 23, 1963. Laboratory vacuum induction heats of 18%-Ni maraging steels were cast into 25-pound ingots and forged info flat bar stock. Transverse tensile and Charpy V specimens were obtained from the forged material. One composition contained 8.4% Co, 3.2% Mo, and 0.2% Ti, five others contained 8.4% Co, 3.2% Mo, and 0.2% Tri, five others contained 8.4% Co, 3.2% Mo, and 0.2% Tri five others contained 8.4% Co, 3.2% Mo, and 0.2% Tri five others contained 8.4% Co, 3.2% Mo, and 0.2% Tri five others contained 8.4% Co, 3.2% Mo, and 0.2% Tri five others contained 8.4% Co, 3.2% Mo, and 0.2% Tri five others contained 8.4% Co, 3.2% Mo, and Charpy V and tensile properties were also conducted toom temperature. Charpy V tests were also conducted UNCLASSIFIED (Over)

Ł